Capabilities of GPT-5 across critical domains: Is it the next breakthrough? (2508.19259v1)
Abstract: The accelerated evolution of LLMs has raised questions about their comparative performance across domains of practical importance. GPT-4 by OpenAI introduced advances in reasoning, multimodality, and task generalization, establishing itself as a valuable tool in education, clinical diagnosis, and academic writing, though it was accompanied by several flaws. Released in August 2025, GPT-5 incorporates a system-of-models architecture designed for task-specific optimization and, based on both anecdotal accounts and emerging evidence from the literature, demonstrates stronger performance than its predecessor in medical contexts. This study provides one of the first systematic comparisons of GPT-4 and GPT-5 using human raters from linguistics and clinical fields. Twenty experts evaluated model-generated outputs across five domains: lesson planning, assignment evaluation, clinical diagnosis, research generation, and ethical reasoning, based on predefined criteria. Mixed-effects models revealed that GPT-5 significantly outperformed GPT-4 in lesson planning, clinical diagnosis, research generation, and ethical reasoning, while both models performed comparably in assignment assessment. The findings highlight the potential of GPT-5 to serve as a context-sensitive and domain-specialized tool, offering tangible benefits for education, clinical practice, and academic research, while also advancing ethical reasoning. These results contribute to one of the earliest empirical evaluations of the evolving capabilities and practical promise of GPT-5.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.