Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive control mechanisms in gradient descent algorithms (2508.19100v1)

Published 26 Aug 2025 in math.OC, cs.SY, and eess.SY

Abstract: The problem of designing adaptive stepsize sequences for the gradient descent method applied to convex and locally smooth functions is studied. We take an adaptive control perspective and design update rules for the stepsize that make use of both past (measured) and future (predicted) information. We show that Lyapunov analysis can guide in the systematic design of adaptive parameters striking a balance between convergence rates and robustness to computational errors or inexact gradient information. Theoretical and numerical results indicate that closed-loop adaptation guided by system theory is a promising approach for designing new classes of adaptive optimization algorithms with improved convergence properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube