Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Design, Implementation and Evaluation of a Real-Time Remote Photoplethysmography (rPPG) Acquisition System for Non-Invasive Vital Sign Monitoring (2508.18787v1)

Published 26 Aug 2025 in cs.CV

Abstract: The growing integration of smart environments and low-power computing devices, coupled with mass-market sensor technologies, is driving advancements in remote and non-contact physiological monitoring. However, deploying these systems in real-time on resource-constrained platforms introduces significant challenges related to scalability, interoperability, and performance. This paper presents a real-time remote photoplethysmography (rPPG) system optimized for low-power devices, designed to extract physiological signals, such as heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2), from facial video streams. The system is built on the Face2PPG pipeline, which processes video frames sequentially for rPPG signal extraction and analysis, while leveraging a multithreaded architecture to manage video capture, real-time processing, network communication, and graphical user interface (GUI) updates concurrently. This design ensures continuous, reliable operation at 30 frames per second (fps), with adaptive feedback through a collaborative user interface to guide optimal signal capture conditions. The network interface includes both an HTTP server for continuous video streaming and a RESTful API for on-demand vital sign retrieval. To ensure accurate performance despite the limitations of low-power devices, we use a hybrid programming model combining Functional Reactive Programming (FRP) and the Actor Model, allowing event-driven processing and efficient task parallelization. The system is evaluated under real-time constraints, demonstrating robustness while minimizing computational overhead. Our work addresses key challenges in real-time biosignal monitoring, offering practical solutions for optimizing performance in modern healthcare and human-computer interaction applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.