Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lightweight posterior construction for gravitational-wave catalogs with the Kolmogorov-Arnold network (2508.18698v1)

Published 26 Aug 2025 in gr-qc, astro-ph.HE, stat.AP, and stat.ML

Abstract: Neural density estimation has seen widespread applications in the gravitational-wave (GW) data analysis, which enables real-time parameter estimation for compact binary coalescences and enhances rapid inference for subsequent analysis such as population inference. In this work, we explore the application of using the Kolmogorov-Arnold network (KAN) to construct efficient and interpretable neural density estimators for lightweight posterior construction of GW catalogs. By replacing conventional activation functions with learnable splines, KAN achieves superior interpretability, higher accuracy, and greater parameter efficiency on related scientific tasks. Leveraging this feature, we propose a KAN-based neural density estimator, which ingests megabyte-scale GW posterior samples and compresses them into model weights of tens of kilobytes. Subsequently, analytic expressions requiring only several kilobytes can be further distilled from these neural network weights with minimal accuracy trade-off. In practice, GW posterior samples with fidelity can be regenerated rapidly using the model weights or analytic expressions for subsequent analysis. Our lightweight posterior construction strategy is expected to facilitate user-level data storage and transmission, paving a path for efficient analysis of numerous GW events in the next-generation GW detectors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube