Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Combined machine learning for stock selection strategy based on dynamic weighting methods (2508.18592v1)

Published 26 Aug 2025 in q-fin.ST

Abstract: This paper proposes a novel stock selection strategy framework based on combined machine learning algorithms. Two types of weighting methods for three representative machine learning algorithms are developed to predict the returns of the stock selection strategy. One is static weighting based on model evaluation metrics, the other is dynamic weighting based on Information Coefficients (IC). Using CSI 300 index data, we empirically evaluate the strategy' s backtested performance and model predictive accuracy. The main results are as follows: (1) The strategy by combined machine learning algorithms significantly outperforms single-model approaches in backtested returns. (2) IC-based weighting (particularly IC_Mean) demonstrates greater competitiveness than evaluation-metric-based weighting in both backtested returns and predictive performance. (3) Factor screening substantially enhances the performance of combined machine learning strategies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube