Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

LLM-Driven Intrinsic Motivation for Sparse Reward Reinforcement Learning (2508.18420v1)

Published 25 Aug 2025 in cs.LG

Abstract: This paper explores the combination of two intrinsic motivation strategies to improve the efficiency of reinforcement learning (RL) agents in environments with extreme sparse rewards, where traditional learning struggles due to infrequent positive feedback. We propose integrating Variational State as Intrinsic Reward (VSIMR), which uses Variational AutoEncoders (VAEs) to reward state novelty, with an intrinsic reward approach derived from LLMs. The LLMs leverage their pre-trained knowledge to generate reward signals based on environment and goal descriptions, guiding the agent. We implemented this combined approach with an Actor-Critic (A2C) agent in the MiniGrid DoorKey environment, a benchmark for sparse rewards. Our empirical results show that this combined strategy significantly increases agent performance and sampling efficiency compared to using each strategy individually or a standard A2C agent, which failed to learn. Analysis of learning curves indicates that the combination effectively complements different aspects of the environment and task: VSIMR drives exploration of new states, while the LLM-derived rewards facilitate progressive exploitation towards goals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube