Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Uncertain data assimilation for urban wind flow simulations with OpenLB-UQ (2508.18202v1)

Published 25 Aug 2025 in physics.flu-dyn, cs.MS, cs.NA, math.NA, and physics.comp-ph

Abstract: Accurate prediction of urban wind flow is essential for urban planning, pedestrian safety, and environmental management. Yet, it remains challenging due to uncertain boundary conditions and the high cost of conventional CFD simulations. This paper presents the use of the modular and efficient uncertainty quantification (UQ) framework OpenLB-UQ for urban wind flow simulations. We specifically use the lattice Boltzmann method (LBM) coupled with a stochastic collocation (SC) approach based on generalized polynomial chaos (gPC). The framework introduces a relative-error noise model for inflow wind speeds based on real measurements. The model is propagated through a non-intrusive SC LBM pipeline using sparse-grid quadrature. Key quantities of interest, including mean flow fields, standard deviations, and vertical profiles with confidence intervals, are efficiently computed without altering the underlying deterministic solver. We demonstrate this on a real urban scenario, highlighting how uncertainty localizes in complex flow regions such as wakes and shear layers. The results show that the SC LBM approach provides accurate, uncertainty-aware predictions with significant computational efficiency, making OpenLB-UQ a practical tool for real-time urban wind analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.