Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

OmniMRI: A Unified Vision--Language Foundation Model for Generalist MRI Interpretation (2508.17524v1)

Published 24 Aug 2025 in cs.CV and cs.AI

Abstract: Magnetic Resonance Imaging (MRI) is indispensable in clinical practice but remains constrained by fragmented, multi-stage workflows encompassing acquisition, reconstruction, segmentation, detection, diagnosis, and reporting. While deep learning has achieved progress in individual tasks, existing approaches are often anatomy- or application-specific and lack generalizability across diverse clinical settings. Moreover, current pipelines rarely integrate imaging data with complementary language information that radiologists rely on in routine practice. Here, we introduce OmniMRI, a unified vision-language foundation model designed to generalize across the entire MRI workflow. OmniMRI is trained on a large-scale, heterogeneous corpus curated from 60 public datasets, over 220,000 MRI volumes and 19 million MRI slices, incorporating image-only data, paired vision-text data, and instruction-response data. Its multi-stage training paradigm, comprising self-supervised vision pretraining, vision-language alignment, multimodal pretraining, and multi-task instruction tuning, progressively equips the model with transferable visual representations, cross-modal reasoning, and robust instruction-following capabilities. Qualitative results demonstrate OmniMRI's ability to perform diverse tasks within a single architecture, including MRI reconstruction, anatomical and pathological segmentation, abnormality detection, diagnostic suggestion, and radiology report generation. These findings highlight OmniMRI's potential to consolidate fragmented pipelines into a scalable, generalist framework, paving the way toward foundation models that unify imaging and clinical language for comprehensive, end-to-end MRI interpretation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com