Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Large Language Models as Universal Predictors? An Empirical Study on Small Tabular Datasets (2508.17391v1)

Published 24 Aug 2025 in cs.AI and cs.CL

Abstract: LLMs, originally developed for NLP, have demonstrated the potential to generalize across modalities and domains. With their in-context learning (ICL) capabilities, LLMs can perform predictive tasks over structured inputs without explicit fine-tuning on downstream tasks. In this work, we investigate the empirical function approximation capability of LLMs on small-scale structured datasets for classification, regression and clustering tasks. We evaluate the performance of state-of-the-art LLMs (GPT-5, GPT-4o, GPT-o3, Gemini-2.5-Flash, DeepSeek-R1) under few-shot prompting and compare them against established ML baselines, including linear models, ensemble methods and tabular foundation models (TFMs). Our results show that LLMs achieve strong performance in classification tasks under limited data availability, establishing practical zero-training baselines. In contrast, the performance in regression with continuous-valued outputs is poor compared to ML models, likely because regression demands outputs in a large (often infinite) space, and clustering results are similarly limited, which we attribute to the absence of genuine ICL in this setting. Nonetheless, this approach enables rapid, low-overhead data exploration and offers a viable alternative to traditional ML pipelines in business intelligence and exploratory analytics contexts. We further analyze the influence of context size and prompt structure on approximation quality, identifying trade-offs that affect predictive performance. Our findings suggest that LLMs can serve as general-purpose predictive engines for structured data, with clear strengths in classification and significant limitations in regression and clustering.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube