Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Graphon Signal Processing for Spiking and Biological Neural Networks (2508.17246v1)

Published 24 Aug 2025 in eess.SP

Abstract: Graph Signal Processing (GSP) extends classical signal processing to signals defined on graphs, enabling filtering, spectral analysis, and sampling of data generated by networks of various kinds. Graphon Signal Processing (GnSP) develops this framework further by employing the theory of graphons. Graphons are measurable functions on the unit square that represent graphs and limits of convergent graph sequences. The use of graphons provides stability of GSP methods to stochastic variability in network data and improves computational efficiency for very large networks. We use GnSP to address the stimulus identification problem (SIP) in computational and biological neural networks. The SIP is an inverse problem that aims to infer the unknown stimulus s from the observed network output f. We first validate the approach in spiking neural network simulations and then analyze calcium imaging recordings. Graphon-based spectral projections yield trial-invariant, lowdimensional embeddings that improve stimulus classification over Principal Component Analysis and discrete GSP baselines. The embeddings remain stable under variations in network stochasticity, providing robustness to different network sizes and noise levels. To the best of our knowledge, this is the first application of GnSP to biological neural networks, opening new avenues for graphon-based analysis in neuroscience.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.