Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-Agent Visual-Language Reasoning for Comprehensive Highway Scene Understanding (2508.17205v1)

Published 24 Aug 2025 in cs.CV, cs.AI, cs.CL, and eess.IV

Abstract: This paper introduces a multi-agent framework for comprehensive highway scene understanding, designed around a mixture-of-experts strategy. In this framework, a large generic vision-LLM (VLM), such as GPT-4o, is contextualized with domain knowledge to generates task-specific chain-of-thought (CoT) prompts. These fine-grained prompts are then used to guide a smaller, efficient VLM (e.g., Qwen2.5-VL-7B) in reasoning over short videos, along with complementary modalities as applicable. The framework simultaneously addresses multiple critical perception tasks, including weather classification, pavement wetness assessment, and traffic congestion detection, achieving robust multi-task reasoning while balancing accuracy and computational efficiency. To support empirical validation, we curated three specialized datasets aligned with these tasks. Notably, the pavement wetness dataset is multimodal, combining video streams with road weather sensor data, highlighting the benefits of multimodal reasoning. Experimental results demonstrate consistently strong performance across diverse traffic and environmental conditions. From a deployment perspective, the framework can be readily integrated with existing traffic camera systems and strategically applied to high-risk rural locations, such as sharp curves, flood-prone lowlands, or icy bridges. By continuously monitoring the targeted sites, the system enhances situational awareness and delivers timely alerts, even in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.