Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reciprocity Theorem and Fundamental Transfer Matrix (2508.17030v1)

Published 23 Aug 2025 in quant-ph, math-ph, math.MP, and physics.optics

Abstract: Stationary potential scattering admits a formulation in terms of the quantum dynamics generated by a non-Hermitian effective Hamiltonian. We use this formulation to give a proof of the reciprocity theorem in two and three dimensions that does not rely on the properties of the scattering operator, Green's functions, or Green's identities. In particular, we identify reciprocity with an operator identity satisfied by an integral operator $\widehat{\mathbf{M}}$, called the fundamental transfer matrix. This is a multi-dimensional generalization of the transfer matrix $\mathbf{M}$ of potential scattering in one dimension that stores the information about the scattering amplitude of the potential. We use the property of $\widehat{\mathbf{M}}$ that is responsible for reciprocity to identify the analog of the relation, $\det{\mathbf{M}}=1$, in two and three dimensions, and establish a generic anti-pseudo-Hermiticity of the scattering operator. Our results apply for both real and complex potentials.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube