Chat-Driven Reconfiguration of Model Predictive Control (2508.16913v1)
Abstract: Traditional control personalization requires users to understand optimization parameters and provide repetitive numerical feedback, creating significant barriers for non-expert users. To deal with this issue, we propose ChatMPC, a model predictive control framework that enables users to personalize control systems and adapt to environmental changes through natural language interaction. The framework operates in two modes: personalization, where users iteratively adjust control behavior to their preferences, and co-development, where users provide real-time environmental information that complements sensor data. We establish convergence guarantees under different user behavior models, demonstrating exponential convergence for consistent feedback and finite-time convergence with logarithmic interaction complexity for tolerance-based users. We validate ChatMPC through experiments in robot navigation with personalized obstacle avoidance and semi-autonomous driving with conversational obstacle reporting. Both experiments achieve real-time performance and demonstrate effective adaptation to user preferences and environmental changes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.