Dynamic Sparse Attention on Mobile SoCs (2508.16703v1)
Abstract: On-device running LLMs is nowadays a critical enabler towards preserving user privacy. We observe that the attention operator falls back from the special-purpose NPU to the general-purpose CPU/GPU because of quantization sensitivity in state-of-the-art frameworks. This fallback results in a degraded user experience and increased complexity in system scheduling. To this end, this paper presents shadowAttn, a system-algorithm codesigned sparse attention module with minimal reliance on CPU/GPU by only sparsely calculating the attention on a tiny portion of tokens. The key idea is to hide the overhead of estimating the important tokens with a NPU-based pilot compute. Further, shadowAttn proposes insightful techniques such as NPU compute graph bucketing, head-wise NPU-CPU/GPU pipeline and per-head fine-grained sparsity ratio to achieve high accuracy and efficiency. shadowAttn delivers the best performance with highly limited CPU/GPU resource; it requires much less CPU/GPU resource to deliver on-par performance of SoTA frameworks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.