GPT-OSS-20B: A Comprehensive Deployment-Centric Analysis of OpenAI's Open-Weight Mixture of Experts Model (2508.16700v1)
Abstract: We present a single-GPU (H100, bf16) evaluation of GPT-OSS-20B (Mixture-of-Experts; 20.9B total, approx. 3.61B active) against dense baselines Qwen3-32B and Yi-34B across multiple dimensions. We measure true time-to-first-token (TTFT), full-decode throughput (TPOT), end-to-end latency percentiles, peak VRAM with past key values (PKV) held, and energy via a consistent nvidia-smi-based sampler. At a 2048-token context with 64-token decode, GPT-OSS-20B delivers higher decode throughput and tokens per Joule than dense baselines Qwen3-32B and Yi-34B, while substantially reducing peak VRAM and energy per 1000 generated tokens; its TTFT is higher due to MoE routing overhead. With only 17.3% of parameters active (3.61B of 20.9B), GPT-OSS-20B provides about 31.8% higher decode throughput and 25.8% lower energy per 1000 generated tokens than Qwen3-32B at 2048/64, while using 31.7% less peak VRAM. Normalized by active parameters, GPT-OSS-20B shows markedly stronger per-active-parameter efficiency (APE), underscoring MoE's deployment advantages. We do not evaluate accuracy; this is a deployment-focused study. We release code and consolidated results to enable replication and extension.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.