Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Transfer Learning via Lexical Relatedness: A Sarcasm and Hate Speech Case Study (2508.16555v1)

Published 22 Aug 2025 in cs.CL and cs.LG

Abstract: Detecting hate speech in non-direct forms, such as irony, sarcasm, and innuendos, remains a persistent challenge for social networks. Although sarcasm and hate speech are regarded as distinct expressions, our work explores whether integrating sarcasm as a pre-training step improves implicit hate speech detection and, by extension, explicit hate speech detection. Incorporating samples from ETHOS, Sarcasm on Reddit, and Implicit Hate Corpus, we devised two training strategies to compare the effectiveness of sarcasm pre-training on a CNN+LSTM and BERT+BiLSTM model. The first strategy is a single-step training approach, where a model trained only on sarcasm is then tested on hate speech. The second strategy uses sequential transfer learning to fine-tune models for sarcasm, implicit hate, and explicit hate. Our results show that sarcasm pre-training improved the BERT+BiLSTM's recall by 9.7%, AUC by 7.8%, and F1-score by 6% on ETHOS. On the Implicit Hate Corpus, precision increased by 7.8% when tested only on implicit samples. By incorporating sarcasm into the training process, we show that models can more effectively detect both implicit and explicit hate.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com