Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

From Indirect Object Identification to Syllogisms: Exploring Binary Mechanisms in Transformer Circuits (2508.16109v1)

Published 22 Aug 2025 in cs.CL and cs.LG

Abstract: Transformer-based LMs can perform a wide range of tasks, and mechanistic interpretability (MI) aims to reverse engineer the components responsible for task completion to understand their behavior. Previous MI research has focused on linguistic tasks such as Indirect Object Identification (IOI). In this paper, we investigate the ability of GPT-2 small to handle binary truth values by analyzing its behavior with syllogistic prompts, e.g., "Statement A is true. Statement B matches statement A. Statement B is", which requires more complex logical reasoning compared to IOI. Through our analysis of several syllogism tasks of varying difficulty, we identify multiple circuits that mechanistically explain GPT-2's logical-reasoning capabilities and uncover binary mechanisms that facilitate task completion, including the ability to produce a negated token not present in the input prompt through negative heads. Our evaluation using a faithfulness metric shows that a circuit comprising five attention heads achieves over 90% of the original model's performance. By relating our findings to IOI analysis, we provide new insights into the roles of specific attention heads and MLPs in LMs. These insights contribute to a broader understanding of model reasoning and support future research in mechanistic interpretability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.