Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Format as a Prior: Quantifying and Analyzing Bias in LLMs for Heterogeneous Data (2508.15793v1)

Published 13 Aug 2025 in cs.CL and cs.LG

Abstract: LLMs are increasingly employed in applications that require processing information from heterogeneous formats, including text, tables, infoboxes, and knowledge graphs. However, systematic biases toward particular formats may undermine LLMs' ability to integrate heterogeneous data impartially, potentially resulting in reasoning errors and increased risks in downstream tasks. Despite these concerns, it remains uncertain whether such format biases are systematic, which data-level factors contribute to them, and what internal mechanisms in LLMs underlie their emergence. In this paper, we make the first attempt to investigate and analyze the format bias in LLMs. To systematically investigate the aforementioned questions, we conduct a three-stage empirical study by constructing an heterogeneous data conflict scenario for the exploration of bias. The first stage explores the presence and direction of bias across a diverse range of LLMs. The second stage aims to examine how key data-level factors, including information richness, structure quality, and format type, influence these biases. The third stage analyzes how format bias emerges within LLMs' attention patterns and evaluates a lightweight intervention to test its potential mitigability. Based on these investigations, we identify three future research directions to reduce format bias: improving data preprocessing through format sanitization and normalization, introducing inference-time interventions such as attention re-weighting, and developing format-balanced training corpora. These directions will support the design of more robust and fair heterogeneous data processing systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube