Format as a Prior: Quantifying and Analyzing Bias in LLMs for Heterogeneous Data (2508.15793v1)
Abstract: LLMs are increasingly employed in applications that require processing information from heterogeneous formats, including text, tables, infoboxes, and knowledge graphs. However, systematic biases toward particular formats may undermine LLMs' ability to integrate heterogeneous data impartially, potentially resulting in reasoning errors and increased risks in downstream tasks. Despite these concerns, it remains uncertain whether such format biases are systematic, which data-level factors contribute to them, and what internal mechanisms in LLMs underlie their emergence. In this paper, we make the first attempt to investigate and analyze the format bias in LLMs. To systematically investigate the aforementioned questions, we conduct a three-stage empirical study by constructing an heterogeneous data conflict scenario for the exploration of bias. The first stage explores the presence and direction of bias across a diverse range of LLMs. The second stage aims to examine how key data-level factors, including information richness, structure quality, and format type, influence these biases. The third stage analyzes how format bias emerges within LLMs' attention patterns and evaluates a lightweight intervention to test its potential mitigability. Based on these investigations, we identify three future research directions to reduce format bias: improving data preprocessing through format sanitization and normalization, introducing inference-time interventions such as attention re-weighting, and developing format-balanced training corpora. These directions will support the design of more robust and fair heterogeneous data processing systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.