Towards the Assessment of Task-based Chatbots: From the TOFU-R Snapshot to the BRASATO Curated Dataset (2508.15496v1)
Abstract: Task-based chatbots are increasingly being used to deliver real services, yet assessing their reliability, security, and robustness remains underexplored, also due to the lack of large-scale, high-quality datasets. The emerging automated quality assessment techniques targeting chatbots often rely on limited pools of subjects, such as custom-made toy examples, or outdated, no longer available, or scarcely popular agents, complicating the evaluation of such techniques. In this paper, we present two datasets and the tool support necessary to create and maintain these datasets. The first dataset is RASA TASK-BASED CHATBOTS FROM GITHUB (TOFU-R), which is a snapshot of the Rasa chatbots available on GitHub, representing the state of the practice in open-source chatbot development with Rasa. The second dataset is BOT RASA COLLECTION (BRASATO), a curated selection of the most relevant chatbots for dialogue complexity, functional complexity, and utility, whose goal is to ease reproducibility and facilitate research on chatbot reliability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.