Large deviation rates for supercritical multitype branching processes with immigration (2508.15428v1)
Abstract: Let ${X_n}{n\geq0}$ be a $p$-type ($p\geq2$) supercritical branching process with immigration and mean matrix $M$. Suppose that $M$ is positively regular and $\rho$ is the maximal eigenvalue of $M$ with the corresponding left and right eigenvectors $\boldsymbol{v}$ and $\boldsymbol{u}$. Let $\rho>1$ and $Y_n=\rho{-n}\Big[\boldsymbol{u}\cdot X_n -\frac{\rho{n+1}-1}{\rho-1}( \boldsymbol{u}\cdot \boldsymbol{\lambda})\Big]$, where the vector $\boldsymbol{\lambda}$ denotes the mean immigration rate. In this paper, we will show that $Y_n$ is a martingale and converges to a $r.v.$ $Y$ as $n\rightarrow\infty$. We study the rates of convergence to $0$ as $n\rightarrow\infty$ of $$ P_i\Big(\Big|\frac{\boldsymbol{l}\cdot X{n+1}}{\textbf{1}\cdot X_n}-\frac{\boldsymbol{l}\cdot(X_nM)}{\textbf{1}\cdot X_n}\Big|>\varepsilon\Big),P_i\Big(\Big|\frac{\boldsymbol{l}\cdot X_n}{\textbf{1}\cdot X_n}-\frac{\boldsymbol{l}\cdot\boldsymbol{v}}{\textbf{1}\cdot \boldsymbol{v} }\Big|>\varepsilon\Big),P\Big(\Big|Y_n-Y\Big|>\varepsilon\Big) $$ for any $\varepsilon>0, i=1,\cdots,p$, $\textbf{1}=(1,\cdots,1)$ and $\boldsymbol{l}\in\mathbb{R}p,$ the $p$-dimensional Euclidean space. It is shown that under certain moment conditions, the first two decay geometrically, while conditionally on the event $Y\geq\alpha$ $(\alpha>0)$ supergeometrically. The decay rate of the last probability is always supergeometric under a finite moment generating function assumption.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.