Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral Adaptation (2508.15281v1)

Published 21 Aug 2025 in cs.IR and cs.LG

Abstract: Recommender systems traditionally represent items using unique identifiers (ItemIDs), but this approach struggles with large, dynamic item corpora and sparse long-tail data, limiting scalability and generalization. Semantic IDs, derived from multimodal content such as text and images, offer a promising alternative by mapping items into a shared semantic space, enabling knowledge transfer and improving recommendations for new or rare items. However, existing methods face two key challenges: (1) balancing cross-modal synergy with modality-specific uniqueness, and (2) bridging the semantic-behavioral gap, where semantic representations may misalign with actual user preferences. To address these challenges, we propose Multimodal Mixture-of-Quantization (MMQ), a two-stage framework that trains a novel multimodal tokenizer. First, a shared-specific tokenizer leverages a multi-expert architecture with modality-specific and modality-shared experts, using orthogonal regularization to capture comprehensive multimodal information. Second, behavior-aware fine-tuning dynamically adapts semantic IDs to downstream recommendation objectives while preserving modality information through a multimodal reconstruction loss. Extensive offline experiments and online A/B tests demonstrate that MMQ effectively unifies multimodal synergy, specificity, and behavioral adaptation, providing a scalable and versatile solution for both generative retrieval and discriminative ranking tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com