Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Unified Framework for Inference with General Missingness Patterns and Machine Learning Imputation (2508.15162v1)

Published 21 Aug 2025 in stat.ME and stat.ML

Abstract: Pre-trained ML predictions have been increasingly used to complement incomplete data to enable downstream scientific inquiries, but their naive integration risks biased inferences. Recently, multiple methods have been developed to provide valid inference with ML imputations regardless of prediction quality and to enhance efficiency relative to complete-case analyses. However, existing approaches are often limited to missing outcomes under a missing-completely-at-random (MCAR) assumption, failing to handle general missingness patterns under the more realistic missing-at-random (MAR) assumption. This paper develops a novel method which delivers valid statistical inference framework for general Z-estimation problems using ML imputations under the MAR assumption and for general missingness patterns. The core technical idea is to stratify observations by distinct missingness patterns and construct an estimator by appropriately weighting and aggregating pattern-specific information through a masking-and-imputation procedure on the complete cases. We provide theoretical guarantees of asymptotic normality of the proposed estimator and efficiency dominance over weighted complete-case analyses. Practically, the method affords simple implementations by leveraging existing weighted complete-case analysis software. Extensive simulations are carried out to validate theoretical results. The paper concludes with a brief discussion on practical implications, limitations, and potential future directions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube