Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Optimizer Stability: Momentum Adaptation of The NGN Step-size (2508.15071v1)

Published 20 Aug 2025 in cs.LG, math.OC, and stat.ML

Abstract: Modern optimization algorithms that incorporate momentum and adaptive step-size offer improved performance in numerous challenging deep learning tasks. However, their effectiveness is often highly sensitive to the choice of hyperparameters, especially the step-size. Tuning these parameters is often difficult, resource-intensive, and time-consuming. Therefore, recent efforts have been directed toward enhancing the stability of optimizers across a wide range of hyperparameter choices [Schaipp et al., 2024]. In this paper, we introduce an algorithm that matches the performance of state-of-the-art optimizers while improving stability to the choice of the step-size hyperparameter through a novel adaptation of the NGN step-size method [Orvieto and Xiao, 2024]. Specifically, we propose a momentum-based version (NGN-M) that attains the standard convergence rate of $\mathcal{O}(1/\sqrt{K})$ under less restrictive assumptions, without the need for interpolation condition or assumptions of bounded stochastic gradients or iterates, in contrast to previous approaches. Additionally, we empirically demonstrate that the combination of the NGN step-size with momentum results in enhanced robustness to the choice of the step-size hyperparameter while delivering performance that is comparable to or surpasses other state-of-the-art optimizers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube