Revisiting RAG Ensemble: A Theoretical and Mechanistic Analysis of Multi-RAG System Collaboration (2508.13828v1)
Abstract: Retrieval-Augmented Generation (RAG) technology has been widely applied in recent years. However, despite the emergence of various RAG frameworks, a single RAG framework still cannot adapt well to a broad range of downstream tasks. Therefore, how to leverage the advantages of multiple RAG systems has become an area worth exploring. To address this issue, we have conducted a comprehensive and systematic investigation into ensemble methods based on RAG systems. Specifically, we have analyzed the RAG ensemble framework from both theoretical and mechanistic analysis perspectives. From the theoretical analysis, we provide the first explanation of the RAG ensemble framework from the perspective of information entropy. In terms of mechanism analysis, we have explored the RAG ensemble framework from both the pipeline and module levels. We carefully select four different pipelines (Branching, Iterative, Loop, and Agentic) and three different modules (Generator, Retriever, and Reranker) to solve seven different research questions. The experiments show that aggregating multiple RAG systems is both generalizable and robust, whether at the pipeline level or the module level. Our work lays the foundation for similar research on the multi-RAG system ensemble.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.