Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 24 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Revisiting RAG Ensemble: A Theoretical and Mechanistic Analysis of Multi-RAG System Collaboration (2508.13828v1)

Published 19 Aug 2025 in cs.AI

Abstract: Retrieval-Augmented Generation (RAG) technology has been widely applied in recent years. However, despite the emergence of various RAG frameworks, a single RAG framework still cannot adapt well to a broad range of downstream tasks. Therefore, how to leverage the advantages of multiple RAG systems has become an area worth exploring. To address this issue, we have conducted a comprehensive and systematic investigation into ensemble methods based on RAG systems. Specifically, we have analyzed the RAG ensemble framework from both theoretical and mechanistic analysis perspectives. From the theoretical analysis, we provide the first explanation of the RAG ensemble framework from the perspective of information entropy. In terms of mechanism analysis, we have explored the RAG ensemble framework from both the pipeline and module levels. We carefully select four different pipelines (Branching, Iterative, Loop, and Agentic) and three different modules (Generator, Retriever, and Reranker) to solve seven different research questions. The experiments show that aggregating multiple RAG systems is both generalizable and robust, whether at the pipeline level or the module level. Our work lays the foundation for similar research on the multi-RAG system ensemble.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube