Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Eliminating Rasterization: Direct Vector Floor Plan Generation with DiffPlanner (2508.13738v1)

Published 19 Aug 2025 in cs.GR

Abstract: The boundary-constrained floor plan generation problem aims to generate the topological and geometric properties of a set of rooms within a given boundary. Recently, learning-based methods have made significant progress in generating realistic floor plans. However, these methods involve a workflow of converting vector data into raster images, using image-based generative models, and then converting the results back into vector data. This process is complex and redundant, often resulting in information loss. Raster images, unlike vector data, cannot scale without losing detail and precision. To address these issues, we propose a novel deep learning framework called DiffPlanner for boundary-constrained floor plan generation, which operates entirely in vector space. Our framework is a Transformer-based conditional diffusion model that integrates an alignment mechanism in training, aligning the optimization trajectory of the model with the iterative design processes of designers. This enables our model to handle complex vector data, better fit the distribution of the predicted targets, accomplish the challenging task of floor plan layout design, and achieve user-controllable generation. We conduct quantitative comparisons, qualitative evaluations, ablation experiments, and perceptual studies to evaluate our method. Extensive experiments demonstrate that DiffPlanner surpasses existing state-of-the-art methods in generating floor plans and bubble diagrams in the creative stages, offering more controllability to users and producing higher-quality results that closely match the ground truths.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.