Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Stands to Reason: Investigating the Effect of Reasoning on Idiomaticity Detection (2508.13365v1)

Published 18 Aug 2025 in cs.CL

Abstract: The recent trend towards utilisation of reasoning models has improved the performance of LLMs across many tasks which involve logical steps. One linguistic task that could benefit from this framing is idiomaticity detection, as a potentially idiomatic expression must first be understood before it can be disambiguated and serves as a basis for reasoning. In this paper, we explore how reasoning capabilities in LLMs affect idiomaticity detection performance and examine the effect of model size. We evaluate, as open source representative models, the suite of DeepSeek-R1 distillation models ranging from 1.5B to 70B parameters across four idiomaticity detection datasets. We find the effect of reasoning to be smaller and more varied than expected. For smaller models, producing chain-of-thought (CoT) reasoning increases performance from Math-tuned intermediate models, but not to the levels of the base models, whereas larger models (14B, 32B, and 70B) show modest improvements. Our in-depth analyses reveal that larger models demonstrate good understanding of idiomaticity, successfully producing accurate definitions of expressions, while smaller models often fail to output the actual meaning. For this reason, we also experiment with providing definitions in the prompts of smaller models, which we show can improve performance in some cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube