Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MAJIC: Markovian Adaptive Jailbreaking via Iterative Composition of Diverse Innovative Strategies (2508.13048v1)

Published 18 Aug 2025 in cs.CR

Abstract: LLMs have exhibited remarkable capabilities but remain vulnerable to jailbreaking attacks, which can elicit harmful content from the models by manipulating the input prompts. Existing black-box jailbreaking techniques primarily rely on static prompts crafted with a single, non-adaptive strategy, or employ rigid combinations of several underperforming attack methods, which limits their adaptability and generalization. To address these limitations, we propose MAJIC, a Markovian adaptive jailbreaking framework that attacks black-box LLMs by iteratively combining diverse innovative disguise strategies. MAJIC first establishes a ``Disguise Strategy Pool'' by refining existing strategies and introducing several innovative approaches. To further improve the attack performance and efficiency, MAJIC formulate the sequential selection and fusion of strategies in the pool as a Markov chain. Under this formulation, MAJIC initializes and employs a Markov matrix to guide the strategy composition, where transition probabilities between strategies are dynamically adapted based on attack outcomes, thereby enabling MAJIC to learn and discover effective attack pathways tailored to the target model. Our empirical results demonstrate that MAJIC significantly outperforms existing jailbreak methods on prominent models such as GPT-4o and Gemini-2.0-flash, achieving over 90\% attack success rate with fewer than 15 queries per attempt on average.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.