Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthetic Data is Sufficient for Zero-Shot Visual Generalization from Offline Data (2508.12356v1)

Published 17 Aug 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Offline reinforcement learning (RL) offers a promising framework for training agents using pre-collected datasets without the need for further environment interaction. However, policies trained on offline data often struggle to generalise due to limited exposure to diverse states. The complexity of visual data introduces additional challenges such as noise, distractions, and spurious correlations, which can misguide the policy and increase the risk of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training robust agents that can generalize to unseen environments. To solve this problem, we propose a simple approach generating additional synthetic training data. We propose a two-step process, first augmenting the originally collected offline data to improve zero-shot generalization by introducing diversity, then using a diffusion model to generate additional data in latent space. We test our method across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrating that it significantly improves generalization without requiring any algorithmic changes to existing model-free offline RL methods. We show that our method not only increases the diversity of the training data but also significantly reduces the generalization gap at test time while maintaining computational efficiency. We believe this approach could fuel additional progress in generating synthetic data to train more general agents in the future.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com