Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Mesh Processing Non-Meshes via Neural Displacement Fields (2508.12179v1)

Published 16 Aug 2025 in cs.GR

Abstract: Mesh processing pipelines are mature, but adapting them to newer non-mesh surface representations -- which enable fast rendering with compact file size -- requires costly meshing or transmitting bulky meshes, negating their core benefits for streaming applications. We present a compact neural field that enables common geometry processing tasks across diverse surface representations. Given an input surface, our method learns a neural map from its coarse mesh approximation to the surface. The full representation totals only a few hundred kilobytes, making it ideal for lightweight transmission. Our method enables fast extraction of manifold and Delaunay meshes for intrinsic shape analysis, and compresses scalar fields for efficient delivery of costly precomputed results. Experiments and applications show that our fast, compact, and accurate approach opens up new possibilities for interactive geometry processing.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube