M3OOD: Automatic Selection of Multimodal OOD Detectors (2508.11936v1)
Abstract: Out-of-distribution (OOD) robustness is a critical challenge for modern machine learning systems, particularly as they increasingly operate in multimodal settings involving inputs like video, audio, and sensor data. Currently, many OOD detection methods have been proposed, each with different designs targeting various distribution shifts. A single OOD detector may not prevail across all the scenarios; therefore, how can we automatically select an ideal OOD detection model for different distribution shifts? Due to the inherent unsupervised nature of the OOD detection task, it is difficult to predict model performance and find a universally Best model. Also, systematically comparing models on the new unseen data is costly or even impractical. To address this challenge, we introduce M3OOD, a meta-learning-based framework for OOD detector selection in multimodal settings. Meta learning offers a solution by learning from historical model behaviors, enabling rapid adaptation to new data distribution shifts with minimal supervision. Our approach combines multimodal embeddings with handcrafted meta-features that capture distributional and cross-modal characteristics to represent datasets. By leveraging historical performance across diverse multimodal benchmarks, M3OOD can recommend suitable detectors for a new data distribution shift. Experimental evaluation demonstrates that M3OOD consistently outperforms 10 competitive baselines across 12 test scenarios with minimal computational overhead.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.