Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Uncalibrated Reasoning: GRPO Induces Overconfidence for Stochastic Outcomes (2508.11800v1)

Published 15 Aug 2025 in cs.LG and cs.AI

Abstract: Reinforcement learning (RL) has proven remarkably effective at improving the accuracy of LLMs in verifiable and deterministic domains like mathematics. Here, we examine if current RL methods are also effective at optimizing LLMs in verifiable domains with stochastic outcomes, like scientific experiments. Through applications to synthetic data and real-world biological experiments, we demonstrate that Group Relative Policy Optimization (GRPO) induces overconfident probability predictions for binary stochastic outcomes, while Proximal Policy Optimization (PPO) and REINFORCE Leave-One-Out (RLOO) yield well-calibrated models. We show that removing group standard normalization in GRPO fixes its miscalibration and provide a theoretical explanation for why normalization causes overconfidence. Our results provide new evidence against the use of standard normalization in GRPO and help pave the way for applications of RL for reasoning LLMs beyond deterministic domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com