Ontology-Guided Query Expansion for Biomedical Document Retrieval using Large Language Models (2508.11784v1)
Abstract: Effective Question Answering (QA) on large biomedical document collections requires effective document retrieval techniques. The latter remains a challenging task due to the domain-specific vocabulary and semantic ambiguity in user queries. We propose BMQExpander, a novel ontology-aware query expansion pipeline that combines medical knowledge - definitions and relationships - from the UMLS Metathesaurus with the generative capabilities of LLMs to enhance retrieval effectiveness. We implemented several state-of-the-art baselines, including sparse and dense retrievers, query expansion methods, and biomedical-specific solutions. We show that BMQExpander has superior retrieval performance on three popular biomedical Information Retrieval (IR) benchmarks: NFCorpus, TREC-COVID, and SciFact - with improvements of up to 22.1% in NDCG@10 over sparse baselines and up to 6.5% over the strongest baseline. Further, BMQExpander generalizes robustly under query perturbation settings, in contrast to supervised baselines, achieving up to 15.7% improvement over the strongest baseline. As a side contribution, we publish our paraphrased benchmarks. Finally, our qualitative analysis shows that BMQExpander has fewer hallucinations compared to other LLM-based query expansion baselines.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.