Role-Augmented Intent-Driven Generative Search Engine Optimization (2508.11158v1)
Abstract: Generative Search Engines (GSEs), powered by LLMs and Retrieval-Augmented Generation (RAG), are reshaping information retrieval. While commercial systems (e.g., BingChat, Perplexity.ai) demonstrate impressive semantic synthesis capabilities, their black-box nature fundamentally undermines established Search Engine Optimization (SEO) practices. Content creators face a critical challenge: their optimization strategies, effective in traditional search engines, are misaligned with generative retrieval contexts, resulting in diminished visibility. To bridge this gap, we propose a Role-Augmented Intent-Driven Generative Search Engine Optimization (G-SEO) method, providing a structured optimization pathway tailored for GSE scenarios. Our method models search intent through reflective refinement across diverse informational roles, enabling targeted content enhancement. To better evaluate the method under realistic settings, we address the benchmarking limitations of prior work by: (1) extending the GEO dataset with diversified query variations reflecting real-world search scenarios and (2) introducing G-Eval 2.0, a 6-level LLM-augmented evaluation rubric for fine-grained human-aligned assessment. Experimental results demonstrate that search intent serves as an effective signal for guiding content optimization, yielding significant improvements over single-aspect baseline approaches in both subjective impressions and objective content visibility within GSE responses.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.