BERTector: Intrusion Detection Based on Joint-Dataset Learning (2508.10327v1)
Abstract: Intrusion detection systems (IDS) are facing challenges in generalization and robustness due to the heterogeneity of network traffic and the diversity of attack patterns. To address this issue, we propose a new joint-dataset training paradigm for IDS and propose a scalable BERTector framework based on BERT. BERTector integrates three key components: NSS-Tokenizer for traffic-aware semantic tokenization, supervised fine-tuning with a hybrid dataset, and low-rank adaptation (LoRA) for efficient training. Extensive experiments show that BERTector achieves state-of-the-art detection accuracy, strong cross-dataset generalization capabilities, and excellent robustness to adversarial perturbations. This work establishes a unified and efficient solution for modern IDS in complex and dynamic network environments.
Collections
Sign up for free to add this paper to one or more collections.