Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Adversarial Learning for Intrusion Detection in Computer Networks (1904.11577v1)

Published 25 Apr 2019 in cs.LG, cs.CR, and stat.ML

Abstract: This paper presents a simple yet efficient method for an anomaly-based Intrusion Detection System (IDS). In reality, IDSs can be defined as a one-class classification system, where the normal traffic is the target class. The high diversity of network attacks in addition to the need for generalization, motivate us to propose a semi-supervised method. Inspired by the successes of Generative Adversarial Networks (GANs) for training deep models in semi-unsupervised setting, we have proposed an end-to-end deep architecture for IDS. The proposed architecture is composed of two deep networks, each of which trained by competing with each other to understand the underlying concept of the normal traffic class. The key idea of this paper is to compensate the lack of anomalous traffic by approximately obtain them from normal flows. In this case, our method is not biased towards the available intrusions in the training set leading to more accurate detection. The proposed method has been evaluated on NSL-KDD dataset. The results confirm that our method outperforms the other state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bahram Mohammadi (7 papers)
  2. Mohammad Sabokrou (53 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.