Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Slow Tuning and Low-Entropy Masking for Safe Chain-of-Thought Distillation (2508.09666v2)

Published 13 Aug 2025 in cs.CL

Abstract: Previous chain-of-thought (CoT) distillation methods primarily focused on enhancing the reasoning capabilities of Small LLMs (SLMs) by utilizing high-quality rationales generated by powerful LLMs (LLMs, e.g., GPT-4). However, few works have noted the negative effects on SLM safety brought by the training, which are revealed in this study. Although there are works on safety alignment that fine-tune LLMs or manipulate model weights to defend against harmful inputs, they require extra computation or annotated data, and probably impact the reasoning ability of SLMs. In this paper, we investigate how to maintain the safety of SLMs during the CoT distillation process. Specifically, we propose a safe distillation method, Slow Tuning and Low-Entropy Masking Distillation (SLowED), containing two modules: Slow Tuning and Low-Entropy Masking. Slow Tuning scales down the magnitude of model weight changes to optimize the model weights in the neighboring space near the initial weight distribution. Low-Entropy Masking masks low-entropy tokens, which are regarded as unnecessary learning targets, to exclude them from fine-tuning. Experiments on three SLMs (Qwen2.5-1.5B, Llama-3.2-1B, BLOOM-1.1B) across reasoning benchmarks (BBH, BB-Sub, ARC, AGIEval) and safety evaluation (AdvBench) show that SLowED retains the safety of SLMs and comparably improves their reasoning capability compared to existing distillation methods. Furthermore, our ablation study presents the effectiveness of Slow Tuning and Low-Entropy Masking, with the former maintaining the model's safety in the early stage and the latter prolonging the safe training epochs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com