Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Cowpox: Towards the Immunity of VLM-based Multi-Agent Systems (2508.09230v1)

Published 12 Aug 2025 in cs.MA and cs.AI

Abstract: Vision LLM (VLM)-based agents are stateful, autonomous entities capable of perceiving and interacting with their environments through vision and language. Multi-agent systems comprise specialized agents who collaborate to solve a (complex) task. A core security property is robustness, stating that the system should maintain its integrity under adversarial attacks. However, the design of existing multi-agent systems lacks the robustness consideration, as a successful exploit against one agent can spread and infect other agents to undermine the entire system's assurance. To address this, we propose a new defense approach, Cowpox, to provably enhance the robustness of multi-agent systems. It incorporates a distributed mechanism, which improves the recovery rate of agents by limiting the expected number of infections to other agents. The core idea is to generate and distribute a special cure sample that immunizes an agent against the attack before exposure and helps recover the already infected agents. We demonstrate the effectiveness of Cowpox empirically and provide theoretical robustness guarantees.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.