Benchmarking Large Language Models for Geolocating Colonial Virginia Land Grants (2508.08266v1)
Abstract: Virginia's seventeenth- and eighteenth-century land patents survive primarily as narrative metes-and-bounds descriptions, limiting spatial analysis. This study systematically evaluates current-generation LLMs in converting these prose abstracts into geographically accurate latitude/longitude coordinates within a focused evaluation context. A digitized corpus of 5,471 Virginia patent abstracts (1695-1732) is released, with 43 rigorously verified test cases serving as an initial, geographically focused benchmark. Six OpenAI models across three architectures (o-series, GPT-4-class, and GPT-3.5) were tested under two paradigms: direct-to-coordinate and tool-augmented chain-of-thought invoking external geocoding APIs. Results were compared with a GIS-analyst baseline, the Stanford NER geoparser, Mordecai-3, and a county-centroid heuristic. The top single-call model, o3-2025-04-16, achieved a mean error of 23 km (median 14 km), outperforming the median LLM (37.4 km) by 37.5%, the weakest LLM (50.3 km) by 53.5%, and external baselines by 67% (GIS analyst) and 70% (Stanford NER). A five-call ensemble further reduced errors to 19 km (median 12 km) at minimal additional cost (approx. USD 0.20 per grant), outperforming the median LLM by 48.6%. A patentee-name-redaction ablation increased error by about 9%, indicating reliance on textual landmark and adjacency descriptions rather than memorization. The cost-efficient gpt-4o-2024-08-06 model maintained a 28 km mean error at USD 1.09 per 1,000 grants, establishing a strong cost-accuracy benchmark; external geocoding tools offered no measurable benefit in this evaluation. These findings demonstrate the potential of LLMs for scalable, accurate, and cost-effective historical georeferencing.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.