Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Distributed Asynchronous Generalized Momentum Algorithm Without Delay Bounds (2508.08218v1)

Published 11 Aug 2025 in math.OC

Abstract: Asynchronous optimization algorithms often require delay bounds to prove their convergence, though these bounds can be difficult to obtain in practice. Existing algorithms that do not require delay bounds often converge slowly. Therefore, we introduce a novel distributed generalized momentum algorithm that provides fast convergence and allows arbitrary delays. It subsumes Nesterov's accelerated gradient algorithm and the heavy ball algorithm, among others. We first develop conditions on the parameters of this algorithm that ensure asymptotic convergence. Then we show its convergence rate is linear in a function of the number of computations and communications that processors perform (in a way that we make precise). Simulations compare this algorithm to gradient descent, heavy ball, and Nesterov's accelerated gradient algorithm with a classification problem on the Fashion-MNIST dataset. Across a range of scenarios with unbounded delays, convergence of the generalized momentum algorithm requires at least 71% fewer iterations than gradient descent, 41% fewer iterations than the heavy ball algorithm, and 19% fewer iterations that Nesterov's accelerated gradient algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube