Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Structural properties of one-dimensional metric currents: SBV-representations, connectedness and the flat chain conjecture (2508.08212v1)

Published 11 Aug 2025 in math.AP, math.FA, and math.MG

Abstract: A comprehensive study of one-dimensional metric currents and their relationship to the geometry of metric spaces is presented. We resolve the one-dimensional flat chain conjecture in this general setting, by proving that its validity is equivalent to a simple geometric connectedness property. More precisely, we prove that metric currents can be approximated in the mass norm by normal currents if and only if every $1$-rectifiable set can be covered by countably many Lipschitz curves up to an $\mathscr{H}1$-negligible set. Building on this, we demonstrate that any $1$-current in a Banach space can be completed into a cycle by a rectifiable current, with the added mass controlled by the Kantorovich--Rubinstein norm of its boundary. We further refine our approximation result by showing that these currents can be approximated by polyhedral currents modulo a cycle. Finally, in arbitrary complete metric spaces, we establish a Smirnov-type decomposition for one-dimensional currents. This decomposition expresses such currents as a superposition, without mass cancellation, of currents associated with curves of bounded variation that have a vanishing Cantor part.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.