Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Adaptive Learning for IRS-Assisted Wireless Networks: Securing Opportunistic Communications Against Byzantine Eavesdroppers (2508.08206v1)

Published 11 Aug 2025 in eess.SP, cs.IT, cs.LG, math.IT, and math.OC

Abstract: We propose a joint learning framework for Byzantine-resilient spectrum sensing and secure intelligent reflecting surface (IRS)--assisted opportunistic access under channel state information (CSI) uncertainty. The sensing stage performs logit-domain Bayesian updates with trimmed aggregation and attention-weighted consensus, and the base station (BS) fuses network beliefs with a conservative minimum rule, preserving detection accuracy under a bounded number of Byzantine users. Conditioned on the sensing outcome, we pose downlink design as sum mean-squared error (MSE) minimization under transmit-power and signal-leakage constraints and jointly optimize the BS precoder, IRS phase shifts, and user equalizers. With partial (or known) CSI, we develop an augmented-Lagrangian alternating algorithm with projected updates and provide provable sublinear convergence, with accelerated rates under mild local curvature. With unknown CSI, we perform constrained Bayesian optimization (BO) in a geometry-aware low-dimensional latent space using Gaussian process (GP) surrogates; we prove regret bounds for a constrained upper confidence bound (UCB) variant of the BO module, and demonstrate strong empirical performance of the implemented procedure. Simulations across diverse network conditions show higher detection probability at fixed false-alarm rate under adversarial attacks, large reductions in sum MSE for honest users, strong suppression of eavesdropper signal power, and fast convergence. The framework offers a practical path to secure opportunistic communication that adapts to CSI availability while coherently coordinating sensing and transmission through joint learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube