Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Keyword Mamba: Spoken Keyword Spotting with State Space Models (2508.07363v1)

Published 10 Aug 2025 in cs.SD and eess.AS

Abstract: Keyword spotting (KWS) is an essential task in speech processing. It is widely used in voice assistants and smart devices. Deep learning models like CNNs, RNNs, and Transformers have performed well in KWS. However, they often struggle to handle long-term patterns and stay efficient at the same time. In this work, we present Keyword Mamba, a new architecture for KWS. It uses a neural state space model (SSM) called Mamba. We apply Mamba along the time axis and also explore how it can replace the self-attention part in Transformer models. We test our model on the Google Speech Commands datasets. The results show that Keyword Mamba reaches strong accuracy with fewer parameters and lower computational cost. To our knowledge, this is the first time a state space model has been used for KWS. These results suggest that Mamba has strong potential in speech-related tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.