Decision-Dependent Distributionally Robust Optimization with Application to Dynamic Pricing (2508.06965v1)
Abstract: We consider decision-making problems under decision-dependent uncertainty (DDU), where the distribution of uncertain parameters depends on the decision variables and is only observable through a finite offline dataset. To address this challenge, we formulate a decision-dependent distributionally robust optimization (DD-DRO) problem, and leverage multivariate interpolation techniques along with the Wasserstein metric to construct decision-dependent nominal distributions (thereby decision-dependent ambiguity sets) based on the offline data. We show that the resulting ambiguity sets provide a finite-sample, high-probability guarantee that the true decision-dependent distribution is contained within them. Furthermore, we establish key properties of the DD-DRO framework, including a non-asymptotic out-of-sample performance guarantee, an optimality gap bound, and a tractable reformulation. The practical effectiveness of our approach is demonstrated through numerical experiments on a dynamic pricing problem with nonstationary demand, where the DD-DRO solution produces pricing strategies with guaranteed expected revenue.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.