Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Towards Effective Prompt Stealing Attack against Text-to-Image Diffusion Models (2508.06837v1)

Published 9 Aug 2025 in cs.CR

Abstract: Text-to-Image (T2I) models, represented by DALL$\cdot$E and Midjourney, have gained huge popularity for creating realistic images. The quality of these images relies on the carefully engineered prompts, which have become valuable intellectual property. While skilled prompters showcase their AI-generated art on markets to attract buyers, this business incidentally exposes them to \textit{prompt stealing attacks}. Existing state-of-the-art attack techniques reconstruct the prompts from a fixed set of modifiers (i.e., style descriptions) with model-specific training, which exhibit restricted adaptability and effectiveness to diverse showcases (i.e., target images) and diffusion models. To alleviate these limitations, we propose Prometheus, a training-free, proxy-in-the-loop, search-based prompt-stealing attack, which reverse-engineers the valuable prompts of the showcases by interacting with a local proxy model. It consists of three innovative designs. First, we introduce dynamic modifiers, as a supplement to static modifiers used in prior works. These dynamic modifiers provide more details specific to the showcases, and we exploit NLP analysis to generate them on the fly. Second, we design a contextual matching algorithm to sort both dynamic and static modifiers. This offline process helps reduce the search space of the subsequent step. Third, we interact with a local proxy model to invert the prompts with a greedy search algorithm. Based on the feedback guidance, we refine the prompt to achieve higher fidelity. The evaluation results show that Prometheus successfully extracts prompts from popular platforms like PromptBase and AIFrog against diverse victim models, including Midjourney, Leonardo.ai, and DALL$\cdot$E, with an ASR improvement of 25.0\%. We also validate that Prometheus is resistant to extensive potential defenses, further highlighting its severity in practice.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.