Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-level Advantage Credit Assignment for Cooperative Multi-Agent Reinforcement Learning (2508.06836v1)

Published 9 Aug 2025 in cs.AI

Abstract: Cooperative multi-agent reinforcement learning (MARL) aims to coordinate multiple agents to achieve a common goal. A key challenge in MARL is credit assignment, which involves assessing each agent's contribution to the shared reward. Given the diversity of tasks, agents may perform different types of coordination, with rewards attributed to diverse and often overlapping agent subsets. In this work, we formalize the credit assignment level as the number of agents cooperating to obtain a reward, and address scenarios with multiple coexisting levels. We introduce a multi-level advantage formulation that performs explicit counterfactual reasoning to infer credits across distinct levels. Our method, Multi-level Advantage Credit Assignment (MACA), captures agent contributions at multiple levels by integrating advantage functions that reason about individual, joint, and correlated actions. Utilizing an attention-based framework, MACA identifies correlated agent relationships and constructs multi-level advantages to guide policy learning. Comprehensive experiments on challenging Starcraft v1&v2 tasks demonstrate MACA's superior performance, underscoring its efficacy in complex credit assignment scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.