D3P: Dynamic Denoising Diffusion Policy via Reinforcement Learning (2508.06804v1)
Abstract: Diffusion policies excel at learning complex action distributions for robotic visuomotor tasks, yet their iterative denoising process poses a major bottleneck for real-time deployment. Existing acceleration methods apply a fixed number of denoising steps per action, implicitly treating all actions as equally important. However, our experiments reveal that robotic tasks often contain a mix of \emph{crucial} and \emph{routine} actions, which differ in their impact on task success. Motivated by this finding, we propose \textbf{D}ynamic \textbf{D}enoising \textbf{D}iffusion \textbf{P}olicy \textbf{(D3P)}, a diffusion-based policy that adaptively allocates denoising steps across actions at test time. D3P uses a lightweight, state-aware adaptor to allocate the optimal number of denoising steps for each action. We jointly optimize the adaptor and base diffusion policy via reinforcement learning to balance task performance and inference efficiency. On simulated tasks, D3P achieves an averaged 2.2$\times$ inference speed-up over baselines without degrading success. Furthermore, we demonstrate D3P's effectiveness on a physical robot, achieving a 1.9$\times$ acceleration over the baseline.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.