Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Introducing Fractional Classification Loss for Robust Learning with Noisy Labels (2508.06346v1)

Published 8 Aug 2025 in cs.LG

Abstract: Robust loss functions are crucial for training deep neural networks in the presence of label noise, yet existing approaches require extensive, dataset-specific hyperparameter tuning. In this work, we introduce Fractional Classification Loss (FCL), an adaptive robust loss that automatically calibrates its robustness to label noise during training. Built within the active-passive loss framework, FCL employs the fractional derivative of the Cross-Entropy (CE) loss as its active component and the Mean Absolute Error (MAE) as its passive loss component. With this formulation, we demonstrate that the fractional derivative order $\mu$ spans a family of loss functions that interpolate between MAE-like robustness and CE-like fast convergence. Furthermore, we integrate $\mu$ into the gradient-based optimization as a learnable parameter and automatically adjust it to optimize the trade-off between robustness and convergence speed. We reveal that FCL's unique property establishes a critical trade-off that enables the stable learning of $\mu$: lower log penalties on difficult or mislabeled examples improve robustness but impose higher penalties on easy or clean data, reducing model confidence in them. Consequently, FCL can dynamically reshape its loss landscape to achieve effective classification performance under label noise. Extensive experiments on benchmark datasets show that FCL achieves state-of-the-art results without the need for manual hyperparameter tuning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.