Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Retrieval Augmented Large Language Model System for Comprehensive Drug Contraindications (2508.06145v1)

Published 8 Aug 2025 in cs.AI

Abstract: The versatility of LLMs has been explored across various sectors, but their application in healthcare poses challenges, particularly in the domain of pharmaceutical contraindications where accurate and reliable information is required. This study enhances the capability of LLMs to address contraindications effectively by implementing a Retrieval Augmented Generation (RAG) pipeline. Utilizing OpenAI's GPT-4o-mini as the base model, and the text-embedding-3-small model for embeddings, our approach integrates Langchain to orchestrate a hybrid retrieval system with re-ranking. This system leverages Drug Utilization Review (DUR) data from public databases, focusing on contraindications for specific age groups, pregnancy, and concomitant drug use. The dataset includes 300 question-answer pairs across three categories, with baseline model accuracy ranging from 0.49 to 0.57. Post-integration of the RAG pipeline, we observed a significant improvement in model accuracy, achieving rates of 0.94, 0.87, and 0.89 for contraindications related to age groups, pregnancy, and concomitant drug use, respectively. The results indicate that augmenting LLMs with a RAG framework can substantially reduce uncertainty in prescription and drug intake decisions by providing more precise and reliable drug contraindication information.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.