Uniform asymptotic expansions for generalised trigonometric integrals and their zeros (2508.05872v1)
Abstract: Asymptotic expansions for generalised trigonometric integrals are obtained in terms of elementary functions, which are valid for large values of the parameter $a$ and unbounded complex values of the argument. These follow from new Liouville-Green asymptotic expansions for incomplete gamma functions. Asymptotic expansions for the real zeros of the generalised trigonometric integrals are then constructed for large $a$ which are uniformly valid without restriction on their size (small or large).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.