Validity and Power of Heavy-Tailed Combination Tests under Asymptotic Dependence (2508.05818v1)
Abstract: Heavy-tailed combination tests, such as the Cauchy combination test and harmonic mean p-value method, are widely used for testing global null hypotheses by aggregating dependent p-values. However, their theoretical guarantees under general dependence structures remain limited. We develop a unified framework using multivariate regularly varying copulas to model the joint behavior of p-values near zero. Within this framework, we show that combination tests remain asymptotically valid when the transformation distribution has a tail index $\gamma \leq 1$, with $\gamma = 1$ maximizing power while preserving validity. The Bonferroni test emerges as a limiting case when $\gamma \to 0$ and becomes overly conservative under asymptotic dependence. Consequently, combination tests with $\gamma = 1$ achieve increasing asymptotic power gains over Bonferroni as p-values exhibit stronger lower-tail dependence and signals are not extremely sparse. Our results provide theoretical support for using truncated Cauchy or Pareto combination tests, offering a principled approach to enhance power while controlling false positives under complex dependence.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.